Seaborn is a Python visualization library based on Matplotlib that provides a high-level interface for drawing attractive and informative statistical graphics. It is particularly useful for exploring and understanding data.
fMRI: Functional Magnetic Resonance Imaging (fMRI) datasets capture brain activity by detecting changes in blood flow, often used in neuroscience research to study brain functions.
Iris: The Iris dataset contains measurements of sepal length, sepal width, petal length, and petal width for three species of iris flowers, commonly used for classification and clustering tasks in machine learning.
Tips: The Tips dataset records information about tips given by customers in a restaurant, including total bill, tip amount, sex of the bill payer, day, time, and size of the dining party, often used for statistical analysis and regression.
Flights: The Flights dataset includes details about flights, such as departure and arrival times, delays, airline, and flight number, commonly used to analyze and predict flight performance and delays.
pip install seaborn
lineplot
function. Here's an example:import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('fmri') # Create line plot sns.lineplot(x='timepoint', y='signal', data=data) # Display the plot plt.show()
scatterplot
function. Here's an example:import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('iris') # Create scatter plot sns.scatterplot(x='sepal_length', y='sepal_width', data=data) # Display the plot plt.show()
palette
parameter. Here's an example:import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('tips') # Create bar plot with custom palette sns.barplot(x='day', y='total_bill', data=data, palette='coolwarm') # Display the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('tips') # Create violin plot sns.violinplot(x='day', y='total_bill', data=data) # Display the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('flights') # Create heatmap heatmap_data = data.pivot_table(index='month', columns='year', values='passengers') sns.heatmap(heatmap_data, annot=True, fmt="d", cmap='viridis') # Display the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('tips') # Create swarm plot sns.swarmplot(x='day', y='total_bill', data=data) # Display the plot plt.show()
distplot
function. Here's an example:import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('tips') # Create distribution plot sns.histplot(data['total_bill'], kde=True) # Display the plot plt.show()
regplot
function. Here's an example:import seaborn as sns import matplotlib.pyplot as plt # Sample data data = sns.load_dataset('tips') # Create regression plot sns.regplot(x='total_bill', y='tip', data=data) # Display the plot plt.show()